Cone Photoreceptor Sensitivities and Unique Hue Chromatic Responses: Correlation and Causation Imply the Physiological Basis of Unique Hues
نویسنده
چکیده
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.
منابع مشابه
Variations in normal color vision. II. Unique hues.
We examined individual differences in the color appearance of nonspectral lights and asked how they might be related to individual differences in sensitivity to chromatic stimuli. Observers set unique hues for moderately saturated equiluminant stimuli by varying their hue angle within a plane defined by the LvsM and SvsLM cone-opponent axes that are thought to characterize early postreceptoral ...
متن کاملThe cone inputs to the unique-hue mechanisms
Our aim was to characterise the chromatic mechanisms that yield the four unique hues: red, green, yellow and blue. We measured the null planes for all four unique hues and report the following two main results. (1) We confirm that three chromatic mechanisms are required to account for the four unique hues. These three chromatic mechanisms do not coincide with the chromatic tuning found in parvo...
متن کاملA neural basis for unique hues?
pathogens. Experimental studies crossing the presence/absence of the bacteria with the presence/absence of a specialized garden pathogen — a fungus in the genus Escovopsis — have shown that ants with antibiotic-producing bacteria are better able to protect their fungal gardens from disease. These studies are among the best evidence that at least some antibiotics suppress infections in nature. T...
متن کاملVariant and invariant color perception in the near peripheral retina.
Perceived shifts in hue that occur with increasing retinal eccentricity were measured by using an asymmetric color matching paradigm for a range of chromatic stimuli. Across nine observers a consistent pattern of hue shift was found; certain hues underwent large perceived shifts in appearance with increasing eccentricity, while for others little or no perceived shift was measured. In separate c...
متن کاملVariations in normal color vision. IV. Binary hues and hue scaling.
We used hue cancellation and focal naming to compare individual differences in stimuli selected for unique hues (e.g., pure blue or green) and binary hues (e.g., blue-green). Standard models assume that binary hues depend on the component responses of red-green and blue-yellow processes. However, variance was comparable for unique and binary hues, and settings across categories showed little co...
متن کامل